
 1

The CTQD Board

 (DRAFT)
S.L. Linn - Florida State University

1 Jan 2001
(Revised 19 Mar 2003)

Introduction
This document provides a description of the programming and operation of the CTQD
boards in the D0 L1/L2 central track trigger (CTT) system. The CTT fits central fiber
tracker (CFT) hits to form a track characterized by a transverse momentum (Pt) and
azimuth angle (Fi). Through an identical readout system, the CTT reconstructs the Fi
position of energy clusters in central pre-shower (CPS) system. An overview of the CTT
is shown in Fig.1. The four CTQD boards receive LVDS signals from the eight CTOC
boards, and transmit the processed track and cluster information to the L2 preprocessors
with optical fiber G-links. The CTQD board is a generic double-wide daughter board
(DWDB). Each CTQD has two Xilinx 600 FPGA chips in the U3 and U5 positions. The
track and cluster algorithms are implemented on the U3 chip alone. The inputs and
outputs conform to the protocols , unless otherwise noted. The algorithms were first
described in the system architecture document.

Figure 1 - Block diagram of the CTT system components: Analog Front End, MIXer, Digital Front
End, Digital Front End Stereo, octant collector (CTOC), quadrant collector (CTQD), STT overlap
(STOV), STT sextant (STSX), and CTT term collector.

 2

Description of the algorithm
The CTQD board combines track and cluster information from two CTOC boards, and
produces outputs which are ordered in Pt and Fi respectively. The inputs arrive ordered
in Pt and Fi, so only a simple ordering is necessary. The most difficult and time-
consuming part of the algorithm is the association of a track Pt with a cluster; because,
upstream of the CTQD, this is done only when the track and cluster are in the same
octant. The CTQD board must fill the Pt field of cluster records when it is missing. The
situation where this occurs is shown in Fig. 2, where the cluster is resident in one octant,
but the track hits are in the adjacent octant. In this case the cluster Pt bin is missing and
all tracks in the boundary sector must be tested for possible matching.

Figure 2 - Data flows in the CTQD for combining octants 0 and 1. Links 0,1,2,7 carry track
information from like numbered octants. Links 3 and 4 carry cluster information for octants 0 and 1
respectively.

 3

The data flow is shown graphically in Fig.2. For example, combination of information
from octants O0 and O1 uses tracks from Links 0 and 1, and cluster information from
Links 3 and 4. To effect the cluster corrections, it is also necessary to have tracks from
O0 and O7 on Links 0 and 7 respectively. Data flowing between the major functional
units is represented by the arrows in Fig.2. The six link receivers are shown on the left.
Track information from two octants is ordered in Pt and transmitted to a level-2 sender,
which formats and transmits the combined list. Cluster information is first corrected for
possible “bend in” tracks, and then ordered in Fi before formatting and transmission to
the L2 processors.

Figure 3 - CTQD top level block diagram

Firmware Implementation
Figure 3 is a block diagram (BDE) of the top-level design. The data flows primarily from
left to right. The front_end module stores the event. The clusto modules are wrappers for
the cluster Pt correction function. Each instantiation reads one octant of cluster data and
two adjacent octants of track information. The corrected cluster frames are stored in
block rams for later processing.
Ordering of track and cluster information is done by the finite state machines (FSM) sort,
which is contained in the BDE combine and combine2 respectively.
The modules sender and sender2 are FSM that construct the six L2 G-link header frames,
two trailer frames, 2x the number of tracks or clusters, and pad frames. The module
slow_interface is responsible for slow monitoring, and is a modification of Olsen’s
L1CTOC_interface.
What follows are block diagrams and finite state machines, which illustrate the main
functions of the implementation. If more detail is required the reader should RTFC.

 4

Figure 4 - Block diagram of front_end.

Block diagram front_end consolidates reception (dwbd_fe), correction (Receivers6), and
storage (storage) of the input link data. The module EvtVote6 determines the event
number (tic & turn), and sync6 re-syncronizes the time structure of all links after parity
correction, which must wait till the end of each event stream. First, each link is
synchronized to the global board clock using the Olsen’s method, and missing link
information is stored for later use. Then the data frames from each link are corrected for
parity errors. The turn and rotation for the event are determined by a majority vote of
links0, 1, and 2, and all links are compared to the winner. Finally the data frames are
stored sequentially in a block ram where they can be accessed by the other functional
units. Since parity correction requires reading all data frames from a link, a final begin of
event (BoE) signal is created when all links have finished.

 5

Figure 5 - Block diagram of receiver

The module receiver houses several functions: parity correction (corrector),
determination of the number of data objects using a parity matrix (GetObj), determination
of the first frame (first), and registering of the header and event frames (HedReg and
EvtReg). For each frame, parcom computes the horizontal parity (HPC), and replaces the
horizontal parity (HP), with HP XOR HPC.

 6

Figure 6 - Block diagram of Corrector.

The block diagram corrector performs the parity correction itself. The module vpreg
calculates the vertical parity (VPC) and registers the vertical parity (VP). The module
GetEoR counts words and issues and end-of-event signal. While reading all input data
frames, the event is stored in a slice RAM (ram32x25d), and addresses are computed by
addsel. Finally, the process NobjParCor computes the parity corrected frame.
The general expression for parity correction of bit b in frame F is given by:

 F(b)corrected = F(b) XOR FC(b), where

 FC(b) = (HP(F) XOR HPC(F)) AND (VP(b) XOR VPC(b)), where

HP(F) is the horizontal parity of the input frame, HPC(F) is the re-computed horizontal
parity of the input frame, VP(b) is bit b of the vertical parity, and VPC(b) is bit b of the
re-computed horizontal parity.

 7

Figure 7 - Block diagram of SavTrk (top), and waveform of signals (bot).

Module SavTrk performs final storage function before link combination. The BoRin
signal precedes the first track/cluster frame by one clock tic – this use of the Begin-of-
Event signal is employed throughout the whole design, and is especially useful in all
FSM.. The mask (U3) process extracts the octant lsb and inserts it into bit-25, and creates
an end-of-event frame (bit-27=1) after the last track/cluster frame. BoRin starts the RAM
address selector (addsel) as the track frames are sequentially stored in the RAM from
address 1 to Ntracks.

 8

Figure 8 - State Machine of Sort

The state machine process performs a ordering of the two input streams. It relies on the
concurrent computation of bits d1 and d2 inside compare and compare2 respectively,
where

d1<='1' when ((data1(27)='0' and not(data2(12 downto 8) <data1(12 downto
8))) or data2(27)='1') else '0';

d2<='1' when ((data2(27)='0' and data2(12 downto 8) <data1(12 downto 8))
or data1(27)='1') else '0';

Recall that data bits 12-8 are the Pt bin and bit 27 is signals the end of data.
For the cluster ordering
 d1<='1' when ((data1(27)='0' or data2(27)='1') and err(0)='0'
) else '0';

 d2<='1' when ((data2(27)='0' or data1(27)='1') and err(1)='0'
) else '0';
First, a track frame from each link is retrieved from the block ram. On the next clock
cycle, the d1 and d2 values are compared and the largest Pt is placed in an output register
and the RAM address is incremented. Processing each input track requires two clock
cycles and formatting requires two G-link frames, so the output is synchronous and no
intermediate storage is required. The ordering of clusters is identical except that no Fi
comparison is necessary since all clusters from the lower octant have lower Fi values
than those in the higher octant. To speed the process, all addresses concurrently
precomputed.

 9

Figure 9 - Block diagram of CLUSTO

There is an instantiation of clusto for each cluster link, which stores clusters after
correction for so called ‘bend-in’ tracks. The module getem (U2) gathers tracks from the
two adjacent octants, and sends to the output RAM (U1). When all tracks have been
processed, a done bit is set, and the number of correction tracks is available.
Upon receipt of the done bit, the fixer module (U4), applies the correction, and cluster
frames are stored in the output RAM (U3).

 10

Figure 10 - FSM of GETEM

The FSM getem gathers tracks for use in cluster Pt bin correction from the front_end
RAM. The inputs dat0(2) are track data from octants adjacent to a cluster octant. The
outputs dat1 are the collected data for octant corrections. The algorithm is implemented
as follows. The R bit indicates that the track has a cluster in a adjacent sector. If the low-
Fi (dat0) frame has a track in sector 9 with positive bend (S=1) and R=1, then change
RA_TS_CFT (dat(19 downto 16)) to 0 and send to output. If the high-fi (dat2) frame has
a track in sector 0 with negative bend (S=0) and R=1, then change RA_TS_CFT to 9 and
send to output. The output frame (dat1) will have the RA_TS_CFT of the cluster for later
comparison with a cluster RA_TS_CPS.

 11

Figure 11 - FSM of FIXER

The FSM fixer implements a doubly nested loop by addressing dual port RAMs. The
outside loop over the list of clusters checks if the cluster R-bit=0. If so, then no correction
is applied and the cluster is output unchanged; otherwise, the list of tracks is looped. Each
track and cluster are compared to see if they are in the same relative trigger sector
(RA_TS) and cluster strip address (RA_PSC). If these are equal then the track is matched
and the cluster Pt field is filled with the track Pt, and a counter is incremented as all
tracks are checked. If the number of matching tracks is greater than one, the M-bit is set
to 1. The process is repeated until all clusters are corrected. If no matching track is found,
then Pt=7 (an illegal value). Note: The last track satisfying the matching condition is
always used, and a track can be used to correct more than one cluster.

 12

Outline of Hierarchy
front_end - BDE
 dwdb_fe6 - Jamiesons front end
 receiver6 - BDE wrapper for 6 receivers
 receiver - BDE
 first - checks L1/L2 and datatype
 parcom - compute horozontal parity
 hedreg - register header and event frames
 corrector - BDE for parity correction.
 addsel - FSM increments read and write address given BoE
 ram32x25d - 32 deep by 25 wide DP ram
 GetEor - FSM counts objects and send and end signal
 del_0 - delays signal by one clock tic.
 del_0 - delays signal by one clock tic
 vpreg - computes Vparity and flags Hparity errors
 nobjparcor - parity correction
 evtvote6 - six input majority vote for event number (tic/turn)
 maj3_24 - 24 bit 3 input majority vote
 maj3 - 1 bit 3 input majority vote
 comevt6 - compare six values to the winner.
 sync6 - FSM send BoE for good links
 storage - BDE
 savtrk - BDE for track storage
 addsel - address incrementer
 ram256x28d - 28 wide 256 deep DPram
 mask - add end of event marker and octantinfo to frames
clusto - BDE store and correct clusters
 getem - FSM gather correction tracks
 fixer - FSM correct tracks
 ram256x28b - block ram for intermediate storage
combine - BDE combine tracks
 compare - compare Pt
 sort - FSM does ordering
combine2 – BDE, combine clusters

sync3 – FSM syncronize clusters after correction
 compare2 - compare fi
 sort - FSM does ordering
sender - FSM output tracks
sender2 - FSM output clusters
slow_interface - interface to slow controls
muxN - address multiplexer
BusArb - does bus arbitration

 13

Input Controls
No controls implemented yet

Outputs
Header frames 5 and 6 contain status information about the event. Header frame 5 has the
following format:
 bits(5 : 0) – parity errors for links(7,4,3,2,1,0)

bits(11 : 6) – link errors for links(7,4,3,2,1,0)
bits(15 : 12) - blank

and Header frame 6:
bits(5 : 0) – event errors for links(7,4,3,2,1,0)
bits(7 : 6) – truncation errors for links(4,3)
bits(9 : 8) – channel DNF errors for links(4,3)

 bits(14 : 10) – blank
 bits(15) – OR of all error bits
The first output frame of each track or cluster has three error bits with the following
meaning:

Bit5 – parity error detected and corrected
Bit6 – unused
Bit7 - unused

Slow Monitoring

page0 - feature register;
 page1 - "00" & parity_history (links 7,4,3,2,1,0)
 page2 - "00" & link_history (links 7,4,3,2,1,0)
 page3 - "00" & event_history (links 7,4,3,2,1,0)

Performance
Copyright (c) 1995-2002 Xilinx, Inc. All rights reserved.

Design Summary:
 Number of errors: 0
 Number of warnings: 100
 Number of Slices: 2,911 out of 6,912 42%
 Number of Slices containing
 unrelated logic: 0 out of 2,911 0%
 Number of Slice Flip Flops: 2,906 out of 13,824 21%
 Total Number 4 input LUTs: 3,938 out of 13,824 28%
 Number used as LUTs: 2,833
 Number used as a route-thru: 205
 Number used for Dual Port RAMs: 900
 (Two LUTs used per Dual Port RAM)
 Number of bonded IOBs: 225 out of 404 55%
 IOB Flip Flops: 136
 Number of Block RAMs: 20 out of 24 83%
 Number of GCLKs: 4 out of 4 100%

 14

Number of GCLKIOBs: 4 out of 4 100%
Total equivalent gate count for design: 431,267
Additional JTAG gate count for IOBs: 10,992
Peak Memory Usage: 105 MB

Device utilization summary:

 Number of External GCLKIOBs 4 out of 4 100%
 Number of External IOBs 225 out of 404 55%
 Number of LOCed External IOBs 225 out of 225 100%

 Number of BLOCKRAMs 20 out of 24 83%
 Number of SLICEs 2911 out of 6912 42%

 Number of GCLKs 4 out of 4 100%

Design statistics:
 Minimum period: 15.939ns (Maximum frequency: 62.739MHz)
 Maximum net skew: 0.946ns
 Minimum input arrival time before clock: 2.900ns
 Minimum output required time after clock: 7.352ns

